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ABSTRACT. We introduce the class ofκ-locally projective modules and

prove that they have the compactness property forR whenκ is a singular,

a subtle (underV = L), or a weakly compact cardinal (forR a PID). In the

case whenκ singular, we show that Shelah’s Singular Compactness Theorem

holds for these modules. We also show that for some not weaklycompact

cardinalκ , κ-locally projective does not imply locally projective. Finally,

we provide some results about ultraproducts of locally projective modules.

1. INTRODUCTION

The study ofκ-freeR-modules, that is,R-modules having the property that

“most submodules” generated by< κ elements are free, has been mainly fo-

cused on determining which pairs consisting of a cardinalκ and a ringR

present thecompactness property. By this, we mean to determine if every

≤ κ-generatedκ-freeR-module is free (in which case we also say thatκ has
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the compactness property for R). What “most submodules” means in this defi-

nition depends on the kind of ringR we are dealing with. In the case ofκ-free

abelian groups, “most submodules” simply means “all subgroups”. However,

for modules over arbitrary ringsR, one cannot expect all submodules to be free,

so “most submodules” will stand for a specific family of free submodules, with

certain closure properties (see Chapter 4 of [9]).

In this paper, we use these ideas to introduce the class ofκ-locally projec-

tive modules, which, by analogy, are those modules having the property that

“most submodules” generated by< κ elements are locally projective. The

main results of this work show thatκ-locally projectiveR-modules satisfy the

compactness property for different kinds of cardinalsκ and ringsR. Also, we

provide an example of a cardinalκ not having the compactness property for

slender principal ideal domains. Before one can tackle compactness problems,

one needs to be acquainted with known properties of the classof locally pro-

jective R-modules. These modules have received different names since they

were introduced byGrusonandRaynaudin [13] asflat strict Mittag-Leffler

modules: they were calledtrace modulesby OhmandRushin[19], universally

torsionless modulesby Garfinkel in [10], and locally projective modulesby

Zimmermann-Huisgenin [21], which is the name we adhere to. These appar-

ently different classes of modules are proven to be the same one (see [1] or

[12]).

The paper is structured as follows. Section 2 is a survey of notions concern-

ing locally projective modules that we consider relevant inorder to approach

compactness problems. For instance, characterizations ofthese modules when

the ringR is a principal ideal domain (PID), and necessary and sufficient condi-

tions for direct products of locally projective modules to be locally projective.
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All the notions mentioned in this section are known but are scattered through-

out the literature. In Section 3, we introduce the class ofκ-locally projective

modules and, by means of Shelah’s Singular Compactness Theorem, we give a

first result on compactness forλ -generated modules whenλ is a singular cardi-

nal larger than|R|. In Section 4, subtle cardinals and their basic properties are

introduced. Section 5 presents the results related to the constructible universe

L which will be necessary in Section 6, where we prove underV = L that if

κ is a subtle cardinal, thenκ-locally projective modules of cardinalityκ are

locally projective. The proof of this result is very demanding and requires the

construction inL of some elementary embeddings. In Section 7, it is shown

that if κ is weakly compact, thenκ-locally projective modules of cardinality

κ over a PID are locally projective. We also prove that regularcardinalsκ not

weakly compact and less than any measurable cardinal do not have the com-

pactness property forRby giving an example of aκ-locally projective module

of cardinalityκ which is not locally projective. Finally, in Section 8 we study

the ultraproduct of locally projective modules when a measurable cardinal is

the index set.

Throughout this work we will letM = MR be a rightR-module, whereR is

an infinite associative ring with 1.
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with f α
1 , . . . , f α

kα
∈ M∗

α andxα
1 , . . . ,x

α
kα

∈ Mα . Forℓ < ω, put

Uℓ = {α < κ : kα = ℓ}

It follows thatκ = ˙⋃
ℓ<ωUℓ, so there is a (unique)k< ω such thatUk ∈ U .

For i = 1, . . . ,k, [n] ∈ M, a∈ [n] andr ∈ R, define

Ui,a,r = {α < κ : f α
i (aα) = r}.

By a similar argument as above, for alli = 1, . . . ,k, there is anr i,a∈R for which

Ui,a,r i,a ∈U . Notice that ifb∈ [n], thenr i,a = r i,b. For all i = 1, . . . ,k, we define

fi : M //R

by means offi([n])= r i,n for all [n]∈M. LetU =Uk∩
⋂k

i=1Ui,m,r i,m ∈U . Then

[m′] = ∑k
i=1[xi ] fi([m]), wherexi = (xα

i : α < κ). It follows that

U ⊆ {α < κ : m′
α = mα} ∈ U

from which we get that[m′] = [m] andM is locally projective. ❐
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